If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2-18t+3=0
a = -16; b = -18; c = +3;
Δ = b2-4ac
Δ = -182-4·(-16)·3
Δ = 516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{516}=\sqrt{4*129}=\sqrt{4}*\sqrt{129}=2\sqrt{129}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{129}}{2*-16}=\frac{18-2\sqrt{129}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{129}}{2*-16}=\frac{18+2\sqrt{129}}{-32} $
| 2.2x=7.48 | | 10(x+1)=20 | | (12-9x+9)/12=0 | | a=59a+6 | | 2x+14=5x-13 | | y-25=96 | | -6x+(-3)=5 | | 12n^2+n-1=0 | | 4y-4=2y+18 | | 5^6x=235 | | 3(4x+2)=-5(4x-5)-4x | | 2(x-2)+1/5=-4 | | x=3=10-x/3 | | 4x-8/5=12 | | x/5=3+-6 | | d=35+19=6 | | 3(4x+4)=-5(3x-5) | | 2x-6=3x-14 | | 3/4=4m | | z2+11z+18=0 | | 4(x-1)+5=9 | | b+(b+3)+(2b-5)=38 | | n^2–14n=0 | | n2–14n=0 | | 2x+2(x+4)=116 | | y-1/9=4 | | 5x/2+5=-5 | | 9=d/8 | | -7v+3(v+6)=-6 | | -14=3(x-4)-5x | | 2p^2+3=3p^2 | | -8u+2(u+5)=28 |